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Repeat sequences account for approximately 45% of the hu-
man genome, and can produce noncanonical DNA secondary 
structures that include G–quadruplexes (G4s). Among these, 
G4s are unique, in that their formation and stability are largely 
influenced by metal cations, such as Na＋, K＋, Ca2＋, and 
Mg2＋. These cations stabilize G4 structures, while also influ-
encing their folding and biological activities. Interactions bet-
ween G4s and metal ions affect key cellular processes that 
include transcription, replication, and genome stability. This 
review highlights the structural diversity and functional roles of 
G4s, and further explores how their ion-dependent properties 
have been harnessed for applications in biosensing and thera-
peutic development. Future research directions to advance 
G4-targeted technologies for both diagnostic and clinical use 
are also discussed. [BMB Reports 2025; 58(9): 397-405]

INTRODUCTION

Repeat sequences are stretches of DNA that occur multiple 
times, and appear throughout the genome as tandem or dis-
persed elements (1). The adjacent tandem repeats that occur 
are termed satellite DNA, with some human diseases being 
attributed to such repeats. For example, CTG repeats are 
associated with spinocerebellar ataxia type 8 (SCA8) and Fuchs 
endothelial corneal dystrophy (FECD) (2, 3). CGG repeats 
cause Beratela–Scott syndrome (BSS), Fragile X syndrome, and 
Neuronal intranuclear inclusion disease (NIID) (4-6), while 
GGGGCC repeats are linked to amyotrophic lateral sclerosis 
and frontotemporal degeneration (ALS/FTD) (5, 7, 8). These 
repeat sequences contribute to disease development, while 
also promoting the formation of noncanonical DNA secondary 

structures, such as G–quadruplex (G4), hairpin, cruciform, 
slipped structure, and triple-stranded DNA (H−DNA) (9).

G4 structures were first identified by Gellert et al., who 
observed stable tetrameric helical structures in guanine-rich 
sequences (10). Since this discovery, biophysical methods, such 
as circular dichroism (CD) and nuclear magnetic resonance 
(NMR), along with computational tools, including G4Hunter, 
have been developed to predict and detect G4 formation (11). 
Unlike other noncanonical DNA structures, G4s can adopt 
various conformations depending on environmental conditions, 
such as the type of cation, DNA sequence, or pH (12-14). 

G4 structures have been implicated in genetic instability, 
primarily due to their interference with DNA replication and 
repair processes (9). In comparison to other noncanonical 
structures, they are also enriched in gene promoter regions, 
suggesting critical epigenetic roles in vivo, such as during cell 
differentiation (15). Zyner et al. found that G4 is abundant in 
human embryonic stem cells, and decreases during neuronal 
differentiation; conversely, stabilization of G4s with PhenDC3 
delayed differentiation and maintained pluripotency, implying 
that during the transition from pluripotency to neuronal iden-
tity, G4s act as key epigenetic regulators (16). 

In addition to their biological significance, the metal 
cation–dependent conformational flexibility of G4s has been 
used to detect various metal ions, and treat disease. For exa-
mple, antiparallel G4s bound to iridium(III) complexes exhibit 
low luminescence; however, upon incubation with Ca2＋, G4s 
transition to a parallel conformation, leading to a significant 
increase in luminescence from the parallel G4-selective iridium 
(III) complex. This property has been exploited to develop the 
Ca2＋ detection probe (17). In therapeutic contexts, cancer cells 
with impaired DNA repair pathways are particularly sensitive 
to G4-stabilizing ligands, such as pyridostatin and RHPS4 (18, 
19). Another G4 ligand, MM41, has been reported to reduce 
tumor growth by 80% (20). 

In this review, we discuss structural conformations and 
biological functions of G4s, as well as recent applications in-
volving their interaction with metal cations in the context of 
biosensing and disease treatment.

G4 formation and genomic distribution
G4 structures are formed by specific guanine-rich sequences in 
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Fig. 1. Diversity of G4 structures. (A) When G-quartets stack in the same direction, the structure is classified as either right-handed 
(clockwise), or left-handed (counterclockwise). (B) G-quartet stacking in opposite directions is referred to as heteropolar stacking, whereas 
stacking in the same direction is termed homopolar stacking. Metal cations that bind to G-quartet planes can stabilize the structure via 
– interactions, enabling the complex to function as a metal ion sensor. (C) G4 structures when formed by two or more separate DNA 
or RNA strands are classified as intermolecular, and when formed by a single strand, intramolecular. (D) Based on strand orientation, G4s 
are categorized as parallel (all strands aligned in the same direction), antiparallel (two strands in one direction, and two in the other), or 
hybrid (three strands in the same direction).

single-stranded DNA or RNA. As the formation of G4s is 
highly dependent on sequence motif, computational algori-
thms have been developed to predict putative G4-forming 
regions in genomic DNA based on patterns such as G≥3 N1−7 
G≥3 N1−7 G≥3 N1−7 G≥3 N1−7 (21, 22). 

Notably, Chambers et al. developed a high-throughput seq-
uencing method known as G4‒seq that enables the genome- 
wide identification and mapping of G4 structures in the 
human genome using the G4‒stabilizing ligand pyridostatin 
(23). Using this approach, they identified 716,310 distinct 
G4‒forming regions throughout the human genome. These 
G4s are distributed across various genomic elements, 
including exons, introns, 5’ and 3’ untranslated regions 
(UTRs), and promoters. Chromatin state has been shown to 
influence G4 formation, in particular in promoter regions (24). 
High G4 density is frequently observed in the regulatory 
regions of oncogenes and tumor suppressor genes, such as 
MYC, TERT, CUL7, and FOXA1, suggesting a strong associ-
ation between G4 formation and genomic instability, somatic 
copy number alterations, and cancer development (25). 

Another G4‒binding probe, BG4, exhibits high specificity 
for both intra- and intermolecular DNA G4s, with no detec-

table binding to RNA hairpins or single-/double-stranded DNA. 
Using BG4, Biffi et al. demonstrated that G4 formation is cell 
cycle-dependent, with the highest levels observed during S 
phase, and the lowest during the G2 and M phases (26). 
Notably, when DNA replication was blocked, the number of 
BG4 foci was significantly reduced, indicating that G4s 
primarily form during DNA replication. 

Influence of metal ions and structural classification of G4 
structures
Metal cations are key determinants of G4 structure and sta-
bility. G4 structures are generally formed by the stacking of 
multiple G‒quartet layers (10). To better understand their struc-
tural diversity, G4s can be classified according to three main 
criteria: the direction of G‒quartet stacking, the number of 
nucleic acid strands involved, and the orientation of guanines 
within the strands.

Based on the direction of G‒quartet stacking, both left- 
handed and right-handed G4 conformations have been obser-
ved using NMR and X-ray crystallography (Fig. 1A) (27). The 
stacking mode is influenced by both the type and concen-
tration of metal cations. In the presence of monovalent metal 
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Fig. 2. Physiological functions of G4 structures and their effects on
chromatin architecture. (A) The hinge region of HP1 recognizes 
parallel G4 structures in TERRA RNA. (B) G4 structures enhance 
weak CTCF binding, and contribute to the formation of topolo-
gically associated domains (TADs). (C) Some transcription factors 
bind more efficiently to G4 structures than to canonical helical 
DNA, while others exhibit the opposite preference. (D) In telomere
regions, G4 formation is favored, due to the repetitive G-rich se-
quences. Telomeric G4 structures hinder the activity of telomerase 
and exonuclease I. (E) G4 structures suppress RNA synthesis by 
interfering with RNA polymerase activity. (F) G4 structures also 
inhibit DNA synthesis by blocking DNA polymerase activity. The 
two double lines separate chromatin architecture-related functions 
from physiological functions.

cations, such as K＋ and Na＋, G4 structures exhibit both 
heteropolar and homopolar stacking, regardless of ion concen-
tration. However, in the presence of divalent cations, such as 
Sr2＋ and Ba2＋, the stacking mode becomes ion concentration‒ 
dependent: as the concentration increases, the structure shifts 
from a mixture of heteropolar and homopolar stacking to 
exclusively heteropolar stacking. This indicates that excess 
divalent metal cations confine the heteropolar stacking mode. 
Interestingly, Ca2＋‒induced G4 structures exclusively adopt 
heteropolar stacking, regardless of ion concentration. These 
cation‒specific effects strongly influence the overall topology 
of the G4s. For example, uniform stacking promoted by Ca2＋ 
and Ba2＋ leads to the formation of a left-handed twist in the 
G4 helix (Fig. 1B) (12).

G4 structures are also categorized based on the number of 
nucleic acid strands. When formed by a single nucleic acid 
strand, they are referred to as intramolecular G4s. In contrast, 
structures formed by two or more strands are considered 
intermolecular G4s (Fig. 1C) (28). Lastly, G4s are classified as 
parallel, antiparallel, or hybrid, according to the orientation of 
the guanine bases (Fig. 1D), where parallel G4s contain 
strands with identical polarity, antiparallel G4s include strands 
with opposing polarities, and hybrid G4s comprise a mixture 
of orientations (29). Antiparallel G4s have subtypes named 
‘chair-type’ and ‘basket-type’. In the chair-type antiparallel G4, 
the two strands running in the same direction are adjacent. 
While in the basket-type, they are positioned diagonally across 
from one another (30, 31).

G4 structures in genome architecture and stability
G4 structures contribute to various aspects of genome archi-
tecture, including the formation of topologically associated 
domains (TADs) and heterochromatin. In Plasmodium falciparum, 
the G-strand binding protein2 (PfGBP2) specifically binds to 
telomere repeats in G4 conformation in vitro, and associates 
with G−rich RNA. In vivo, PfGBP2 partially colocalizes with 
the telomeric protein HP1 (32). HP1 is involved in the for-
mation and maintenance of heterochromatin through its intera-
ction with trimethylated histone H3 at lysine 9 (H3K9me3) 
(33). Notably, HP1 recognizes parallel G4s and assemblies 
formed by telomeric repeat-containing RNAs (TERRA) that are 
associated with chromatin (Fig. 2A) (34). 

Another key player in genome architecture is CTCF, a multi-
functional DNA-binding protein that coordinates with the cohesin 
complex to organize chromatin loops and gene expression 
(35). G4 formation, often accompanied by R–loops, has been 
shown to enhance weak CTCF binding at sites located up-
stream of G4s (Fig. 2B) (36). In the human genome, G4s fre-
quently colocalize with CTCF–bound CpG islands (CGIs) (37).

Beyond chromatin organization, G4 structures also partici-
pate in transcriptional regulation through interactions with 
transcription factors (TFs). For example, AP−1 and SP1, two 
master transcription factors, are able to bind their recognition 
sites in the presence of folded G4 structures, thereby contri-

buting to cell type–specific transcriptional programs (38). For 
this reason, G4s are considered epigenetic regulatory elements 
in transcription (Fig. 2C). 

G4 structures can also impact genome stability by promo-
ting DNA damage and interfering with repair processes. They 
can stall replication forks, induce double-strand breaks, and 
hinder the recognition or removal of oxidative lesions (39). At 
telomeres, G4 structures play an additional regulatory role. 
Due to the repetitive TTAGGG sequence, telomeres are hots-
pots for G4 formation. They are involved in regulating telo-
mere shortening, which is associated with exonuclease I 
activity and cell proliferation (Fig. 2D) (40). 

Beyond their structural roles, G4s exert functional impacts 
on gene regulation and DNA replication. Telomestatin, a telo-
merase inhibitor, binds to promoter G4s within the proto- 
oncogene c–Myb, and suppress its expression in glioma stem 
cells (41). G4 formation in the human c–myb gene has also 
been shown to arrest transcription by blocking RNA poly-
merase (Fig. 2E) (42). 
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Genomic regions with high G4−forming potential, including 
telomeres, often require the homologous recombination acti-
vities of BRCA1 and BRCA2 for efficient replication (43). 
These proteins help prevent genomic instability caused by 
impaired replication through G4−rich regions. As a result, 
G4–stabilizing compounds reduced the viability of cells lacking 
BRCA1, BRCA2, or RAD51. G4 structures also interfere with 
DNA replication at specific loci. ARID1A, a member of the 
SWI/SNF chromatin remodeling complex, plays an essential 
role in modulating chromatin structure and gene expression. 
G4s were found to be required for ARID1A promoter activity, 
but inhibited DNA replication within the same region (44). 
More broadly, the blocking of DNA synthesis by G4s occurs 
regardless of polymerase type, and depends on the thermo-
dynamic stability of the G4 itself (Fig. 2F) (45). 

In addition to their role in genome stability, G4s have been 
implicated in regulating cellular differentiation. Braco–19 is a 
well-known G4–binding compound. Interestingly, G4 levels 
increase during adipogenic differentiation, but treatment with 
Braco–19 reduces their abundance in adipose cells, suggesting 
that G4s may influence cell fate determination (46). 

Molecular interactors of metal ion‒dependent G4 structures
A variety of G4–specific ligands and proteins have been 
identified. For example, L−Apt 12−6 is one of the L−RNA 
aptamers that specifically recognize parallel G4 structures both 
in vitro, and in cells (47). Meanwhile, SiR−PyPDS, a G4– 
specific fluorescent probe, enables real-time, single-molecule 
detection of individual G4 structures in living cells (48). 

In addition to these chemical ligands, several helicases play 
critical roles in resolving G4 structures to maintain genomic 
stability. Members of the RecQ helicase family, such as BLM 
and WRN, are notable examples. BLM helicase exhibits high 
specificity for G4 structures, and Chatterjee et al. elucidated its 
mechanism of interaction with intra-stranded G4 using single- 
molecule FRET (49). WRN, another RecQ family helicase, 
selectively unwinds specific tetra-helical structures, such as 
d(CGG)7, but is unable to resolve telomeric G4s (50). 

DHX36, a member of the DEAH/RHA helicase family, binds 
both DNA and RNA G4s with exceptionally high affinity (51). 
DHX9 helicase is capable of unwinding various DNA and 
RNA secondary structures, including replication forks, D–loops, 
R–loops, and G4s (52). Paeschke et al. demonstrated that both 
S. cerevisiae PIF1 and human PIF1 can bind and unwind G4 
structures in vitro. Loss of PIF1 activity results in G4– 
associated genetic and epigenetic instability, whereas expre-
ssion of human PIF1 in yeast suppresses G4–induced DNA 
damage and telomere elongation (53). 

FANCJ helicase can also resolve G4s in an ATPase– 
dependent manner. Its activity is critical to maintain genomic 
stability, particularly in telomere metabolism. When FANCJ– 
depleted cells were treated with a G4–stabilizing compound, 
they showed impaired proliferation, increased apoptosis, and 
elevated levels of DNA damage, highlighting the essential role 

of FANCJ in mitigating G4–induced stress (54-56). 
Another important G4–resolving factor is CNBP, which pro-

motes G4 unfolding, and regulates gene expression in promoter 
regions (57). Nucleolin also contributes to G4 metabolism by 
binding to the long loops of G4s, irrespective of their con-
formation or sequence (58). 

To summarize, these G4–interacting ligands and proteins 
play diverse and complementary roles in recognizing, binding, 
resolving, and visualizing G4 structures. Notably, many of 
these interactions are influenced by the presence and type of 
metal ions, which are critical for G4 folding and stability. Their 
coordinated actions are essential to preserve genome integrity 
and regulate gene expression in the presence of G4s.

APPLICATIONS FOR METAL SENSOR 

Metal cations have been extensively studied for their roles in 
forming and stabilizing G4s, which spontaneously form in 
guanine–rich sequences in the presence of specific cations 
(59). For example, Na＋ can enter the central channel of a G4 
structure, preventing its collapse, and promoting the formation 
of a stable antiparallel conformation (23, 59). An NMR study 
has shown that G4s preferentially bind K＋ over Na＋ ions due 
to the lower hydration free energy of K＋, making K＋ 
energetically favorable (60). Wong et al. also demonstrated 
that Rb＋ binds strongly to G4s using NMR analysis (61). Also, 
other monovalent (e.g., Li＋, Cs＋) and divalent cations, such as 
Mg2＋, were found to stabilize G4s (62). Overall, metal cations 
significantly influence the structural stability and conforma-
tional dynamics of G4s. 

Recently, several studies have highlighted the potential of 
metal cations to serve as functional probes by interacting with 
G4s (63-66). This section has focused on how the type and 
concentration of metal cations affect G4 properties, particu-
larly in the context of their application as sensing elements. 
Understanding G4–metal cation interactions provides valuable 
insights to develop both diagnostic sensors for harmful metal 
ions, and therapeutic strategies targeting G4–mediated pathways. 

Metal ion–stabilized G4 structures and G4 in therapeutic 
applications
Metal cations play a critical role in enhancing the affinity bet-
ween G4 structures and therapeutic ligands. Gama et al. showed 
that platinum (Pt) and copper (Cu) ions significantly increase the 
binding affinity of anthracene–containing terpyridine ligands for 
G4s (67). This metal–ligand–G4 complex can inhibit telomerase 
activity, a key enzyme involved in cell immortalization that is 
overexpressed in (85-90)% of cancer cells (Fig. 3A). 

Similarly, Cai et al. reported that Thioflavin T (ThT), a selec-
tive G4 ligand, induces a conformational stabilization of G4s 
under high concentrations of K＋, using single-molecule nano-
pore technology (68). This ThT−G4 complex is also a po-
tential therapeutic agent that suppresses telomerase activity 
(Fig. 3A). As well, two types of ruthenium complexes have 
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Fig. 3. Applications of G4–metal cation interactions in sensing and telomerase inhibition. (A) Three strategies for telomerase inhibition: (1) 
inhibition via G4 binding of Cu- and Pt-based anthracene–containing terpyridine ligands; (2) G4 stabilization and telomerase inhibition 
using Thioflavin T (ThT) and K＋ ions; and (3) stabilization of human telomeric G4 and inhibition of telomerase activity by Ru–complexes 
1 and 2 containing indoloquinoline. (B) Bleomycin reduces the fluorescence quenching ability of metal cations. This leads to increased 
fluorescence intensity of the NMM−G4 complex, enabling bleomycin detection. (C) In the absence of Pb2＋, Na＋–induced G4 is cleaved 
by CRISPR−Cas12a. However, in the presence of Pb2＋, G4 undergoes a conformational change that prevents cleavage. (D) Hemin 
released from trypsin-degraded hemoglobin binds to fluorescently labeled G-rich oligonucleotides to form a G4‒hemin complex. Upon 
Pb2＋ exposure, the complex undergoes photoinduced electron transfer (PET), resulting in quenching of ROX fluorescence (“ROX-off”). (E) 
K＋‒induced G4 structures can bind both DAPI and NMM (left), while Pb2＋‒induced G4s fail to bind NMM, leading to signal loss 
(NMM‒off, right).

been shown to stabilize human telomeric G4s (69). These 
ruthenium complexes provide enhanced selectivity of indolo-
quinoline ligand for human telomeric G4s. The resulting in-
doloquinoline–G4 complex can repress telomerase activity in 
human cells (Fig. 3A) (70). 

Beyond cancer–related applications, G4–based sensors have 
also been explored for toxic compounds. Bleomycin, a che-
motherapeutic agent associated with lung toxicity, disrupts 
lung architecture, and leads to rapid pulmonary dysfunction 
and death (71). Qin et al. developed a G4–based sensor for 
Bleomycin detection (72). In this system, interactions between 
Bleomycin and metal cations diminish the cations’ ability to 
quench fluorescence, resulting in a detectable signal change. 
Furthermore, bleomycin can be detected by a G4-based 
sensor, in which the G4 structure binds to N-methylmeso-
porphyrin (NMM). This binding markedly enhances the fluore-
scence intensity of NMM by reducing the Cu²⁺-mediated quen-
ching effect. This sensor enables the detection of Bleomycin in 
complex samples, such as serum and wastewater (Fig. 3B). 

G4–based probes for heavy metal sensing and diagnostic 
applications
Some of the heavy metal cations can have harmful effects on 
the human body. Many studies have developed heavy metal 

cation sensors with G4 to prevent this. Lin et al. demonstrated 
that hypericin (Hyp) functions as a dispersion-induced fluoro-
phore (DIF), exhibiting red fluorescence upon binding to 
Ba2＋–stabilized G4 structures (73). Based on this mechanism, 
they developed a highly selective G4-based fluorescent sensor 
for Ba2＋ detection. Ba2＋ also binds to human telomeric G4s, 
even in the presence of a 15,000–fold excess of K＋, which is 
highly abundant in physiological environments. This indicates 
that the Hyp–G4 complex exhibits strong K＋ tolerance, and 
remains functional under such conditions (73-75). 

In addition to Ba2＋ detection, G4 structures have been exten-
sively used in designing fluorescent sensors for divalent lead 
ions (Pb2＋). Here, we highlight three representative G4-based 
strategies for Pb2＋ detection. One approach employs a G4 
structure in combination with a CRISPR−Cas12a system (Fig. 
3C) (76). In the absence of Pb2＋, the Na＋–induced G4 can be 
cleaved by Cas12a. However, in the presence of Pb2＋, it 
competitively binds to the G4, inducing a conformational 
change that renders it resistant to the Cas12a–mediated clea-
vage. Based on this principle, the DNA probes labeled with 
fluorophores at both ends enable fluorescent detection of Pb2＋ 
in food samples.

Another strategy involves the G4–hemin complex, which 
functions as an aptasensor with sophisticated molecular recog-
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nition capabilities (Fig. 3D) (77-80). Upon trypsin–mediated 
cleavage of hemoglobin, the released heme binds to a G-rich 
oligonucleotide labeled with a fluorescent dye, forming the 
G4–hemin complex. In the presence of Pb2＋, the G-rich se-
quence folds into a G4 structure that facilitates hemin binding, 
and the resulting complex acts as an electron acceptor. This 
triggers photo-induced electron transfer (PET) from the dye to 
the complex, resulting in fluorescent quenching. 

A third strategy involves two dyes: DAPI and NMM, which 
preferentially bind to double-stranded DNA and G4 structures, 
respectively (Fig. 3E) (81). G4s exhibit stronger binding affinity 
for Pb2＋ than for K＋, and while K＋–induced G4s can bind 
both DAPI and NMM, Pb2＋–induced G4s selectively bind only 
DAPI (82). As a result, the fluorescent signals at 450 nm and 
610 nm (DAPI and NMM, respectively) shift upon Pb2＋ expo-
sure, enabling sensitive detection of Pb2＋ in food samples. 

Beyond heavy metal sensing, G4 structures have been ex-
plored as diagnostic tools for disease-related targets. A notable 
example is an aptasensor developed by Mizunuma et al., 
which used an ion-responsive DNA aptamer (IRDAptamer) library 
designed based on G4 structure (83). This has been employed 
to screen for Mn2＋ ions that are implicated in neurodegene-
rative diseases, such as Parkinson’s and Alzheimer’s. 

Perspective 
This review provides an overview of various G4 structural 
conformations and their functional implications. G4 structures 
influence key physiological processes, such as DNA repli-
cation, transcription, and telomere extension. Moreover, G4 
structures contribute to the regulation of higher-order chro-
matin architecture by modulating interaction with proteins 
such as HP1 and CTCF. Due to these important effects, many 
physiological roles of G4 have been identified. However, the 
role of G4 conformation in shaping DNA architecture and 
dynamics remains largely unexplored. 

Future research could address how G4 structures influence 
genome organization, particularly in relation to TADs and 
DNA loop formation. If G4s affect genome architecture, they 
may interact with structural proteins, such as CTCF and 
cohesin complex. These potential roles suggest that G4s could 
act as critical epigenetic factors that are involved in the 
formation and regulation of TADs and chromatin loops.

This review also highlights applications based on the 
interaction between metal cations and G4s. Metal cations can 
stabilize G4 structures by promoting specific conformations 
and enhancing binding with G4–interactive ligands. Levera-
ging this property, researchers have developed sensors that are 
capable of detecting toxic metal cations in biological samples. 
These studies indicate promising potential for innovative G4- 
based metal sensing technologies. However, several limi-
tations remain. Current G4-based sensors often suffer from 
poor selectivity among different metal cations, and face chal-
lenges in achieving accurate quantitative analysis. Furthermore, 
their sensitivity is often insufficient to detect metal ions at low 

concentrations. Future research should aim to improve both 
the sensitivity and precision of these sensors, and enable 
quantitative detection. 

Efforts could also be made to develop sensors that are able 
to detect not only external sources of heavy metals, but also 
biologically relevant concentrations within the human body. 
This could contribute to faster diagnosis of heavy metal toxi-
city, and potentially support the development of new thera-
peutic agents. 

As most current applications focus on food safety, expan-
ding their use to environmental samples, such as river water or 
air, would broaden their utility. In summary, advancing sensor 
technologies based on the interaction between G4 and metal 
ions would lead to practical applications across medicine, 
environmental monitoring, and public health.
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